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Logistics

PS3 grades, solutions posted

You should have heard something from me about your projects

Remaining schedule:
I 11/15 – Discrete Choice (Chris Conlon guest lecture)
I 11/22 – No class – Happy Thanksgiving!
I 11/29 – Workshop with Skand (let us know if there’s anything you’d like

to review)
I 12/6 – Last class: group project presentations
I 12/13 – Group projects due by email

Group presentations: 12 minutes for individuals (7), 15 minutes for
groups (4)

I 144 minutes total: need to stay on schedule!
I Pizza? Falafel?
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Question

As we all know, if you only have firm fixed effect in a regression, what
you analyze is the variation within a firm. Similarly, if you only have
time fixed effect in a regression, what you analyze is the variation
within a time. My question is how we should interpret results if we
have both firm fixed effect and time fixed effect in one regression.
Do we look at the variation both within a firm and within a time?
This interpretation seems weird to me. So, I am not exactly sure
which data variation is used if we have both firm fixed effect and
time fixed effect.
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Likelihood

What’s a likelihood? It’s basically the probability of the data
conditional on a parameter value θ:

Pr (observed data|θ) ,

but we think of this as a function of θ and telling us something about
the plausibility of θ.

This requires we have a model that says what the probability of the data
is.

⇒ In comparison to GMM estimation, Likelihood-based estimation
requires strong assumptions about the data generating process.
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Likelihood Function

Let f (·|θ) represent the probability density of the data conditional on a
parameter value θ. If data are independently and identically distributed,
the likelihood function is

L (θ|y) = f (y1, y2, . . . , yn|θ) =
n∏

i=1

f (yi |θ)

where yi indicates individual observations (including both dependent
and explanatory variables).

We typically work with log-likelihood function because it’s
computationally simpler:

ln L (θ|y) =
n∑

i=1

ln f (yi |θ) .
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Maximum Likelihood Estimation

Maximum likelihood estimation entails estimating θ by maximizing
the likelihood function:

θ̂ = arg min
θ

L (θ|y) = arg min
θ

ln L (θ|y)

Since the natural log function is strictly increasing, maximizing the
likelihood and maximizing log likelihood amount to the same thing.
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Likelihood of Normal Errors

Recall that PDF of normal distribution is

fN (ε|σ) =
1√

2πσ2
exp

(
–ε2

2σ2

)
(for normal ε with zero mean and variance σ2)

Thus, log likelihood of an individual observation of εi is

ln fN (εi |σ) = –
1

2

(
lnσ2 + ln 2π +

ε2
i

σ2

)
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Likelihood for Linear Regression Model

For linear model with εi mean-zero normal conditional on xi , the
likelihood of one observation is

L (β,σ|yi , xi ) = fN
(
yi – x′iβ|σ

)
noting that this requires the distribution of εi to be mean-zero normal
conditional on xi .

Assuming the data are i.i.d across observations, the conditional
likelihood of all the data is then

ln L (β,σ|y, X) =
∑n

i=1 ln fN
(
yi – x′iβ|σ

)
= – 1

2

∑n
i=1

(
lnσ2 + ln 2π +

(yi–x′iβ)
2

σ2

)
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MLE for Linear Model I

Linear model log-likelihood:

ln L (β,σ|y, X) = –
1

2

n∑
i=1

(
lnσ2 + ln 2π +

(
yi – x′iβ

)2

σ2

)

Focus on the term that involves β:

–1

2σ2

n∑
i=1

(
yi – x′iβ

)2

NB: maximizing the likelihood with respect to β is equivalent to least
squares
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MLE for Linear Model II

MLE estimate of β is the same as OLS.

MLE estimate of σ2 comes from setting d
dσ ln L

(
β̂,σ|y, X

)
= 0:

σ̂2
MLE = n–1

n∑
i=1

e2
i

where ei = yi – x′i β̂.

Note that this is a bit different than the estimate of σ2 we saw before:

s2 = (n – K )–1
n∑

i=1

e2
i

but the difference will be small in large samples. Recall: s2 is a unbiased
estimate of σ2, so this means that the ML estimate is biased, and
substantially biased in small samples.
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Asymptotic Efficiency

An estimator is asymptotically efficient if its asymptotic covariance
matrix is not larger than any other consistent estimator (i.e., standard
errors are as small as any other estimator).

It can be shown that (under regularity conditions), MLE is
asymptotically efficient.

Thus, MLE always performs well in large samples.
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Estimating Standard Errors I

The first way to estimate the asymptotic covariance matrix is to take
second derivatives of the likelihood function:

Γ–1 =

–
∂2 ln L

(
θ̂
)

∂θ̂∂θ̂
′

–1

A second way is to compute the covariance of the first derivatives:

S–1 =

[
n∑

i=1

ĝi ĝ
′
i

]–1

where

ĝi =
∂ ln f

(
xi , θ̂

)
∂θ̂

.

Either of the above is an asymptotically consistent estimator of

V
(
θ̂MLE

)
. The latter is usually easier to compute.
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MLE as GMM

To maximize the likelihood function we set

n–1
n∑

i=1

ĝi = n–1
n∑

i=1

∂ ln f
(

xi , θ̂
)

∂θ̂
= 0.

Thus, maximum likelihood is a GMM estimator based on moments

E

∂ ln f
(

xi , θ̂
)

∂θ̂

 = 0.

The GMM estimator for the asymptotic covariance matrix has the form(
ΓS–1Γ

)–1
,

but in the MLE context it can be shown that S and Γ are asymptotically
equivalent, so they effectively cancel and we can use either S–1 or Γ–1

to estimate the variance.
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Conditional Likelihood I

Our starting point was that likelihoods were about the probability of the
data conditional on a parameter value:

ln L (θ|data) =
n∑

i=1

ln f (datai |θ) .

The above derivation was about εi , or the probability of yi |xi . But xi
might be a random variable, and it’s also part of the data.

Do we need to consider the randomness in xi? In econometric models,
typically we don’t bother to explicitly model the randomness in
explanatory variables.
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Conditional Likelihood II

Start with the full log likelihood function

n∑
i=1

ln p (yi , xi |α)

We can decompose this using Pr (yi , xi ) = Pr (yi |xi ) Pr (xi ):

n∑
i=1

ln f (yi |xi ,θ) +
n∑

i=1

ln g (xi , δ)

where θ is the subset of α that dictates the distribution of yi |xi and δ is
the subset of α that dictates the distribution of xi .

If we’re only interested in θ, then as long as there are no restrictions
between θ and δ, we can just focus on the first component of the
likelihood function (i.e., the conditional likelihood function)
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Endogeneity

Note that the likelihood framework does not solve the endogeneity
problem.

The consistency of MLE relies on the model being correctly specified,
and when εi and xi are correlated, the mean of εi is generally non-zero
conditional on xi .

Full information maximum likelihood (FIML) and limited information
maximum likelihood (LIML) are the ML analog of IV estimators.
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Application: Censored Regression Model I

Censored data is a common problem
I Demand for a concert/sporting event with capacity constraints.
I Meters often only measure outcomes within a bounded range

(speedometers, thermometers, etc.)
I A test is scored on a bounded range (200-800), and we’re thinking of the

test as marker for ability.
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Application 1: Censored Regression Model II

y∗i = xiβ + εi latent variable (black dashed)
yi = 0 if y∗i ≤ 0 (red line)
yi = y∗i if y∗i > 0 (red line)

-1 1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

How would we go about estimating this model?
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Background: Truncated Normal

Suppose v is distributed with standard normal PDF, but only for values
above a cutoff a.

PDF will be
φ (v)

1 – Φ (a)

where φ is the standard normal PDF and Φ is standard normal CDF.

Note that we must divide by 1 – Φ (a) to make the PDF integrate to 1.
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Truncated Normal Moments I

Truncated Normal Properties

Suppose v ∼ N (0, 1) has a normal distribution truncated with v > a. That
is, v takes values in (a,∞) and has PDF

φ (v)

1 – Φ (a)
.

Then,

E [v ] =
φ(a)

1–Φ(a)

Var [v ] =
(

1 –
φ(a)

1–Φ(a)

(
φ(a)

1–Φ(a)
– a
))

The ratio of a normal density to its CDF,
φ(v)

1–Φ(a)
, is known as the inverse

Mills ratio.
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Truncated Normal Moments II

If original distribution is v ∼ N
(
µ,σ2

)
, truncated for v > a, we get

similar results:

E [v ] = µ+ σ
φ(α)

1–Φ(α)

Var [v ] = σ2
(

1 –
φ(α)

1–Φ(α)

(
φ(α)

1–Φ(α)
– α
))

where α = a–µ
σ .

If truncation is for v < a, then we replace
φ(α)

1–Φ(α)
with –

φ(α)
Φ(α)
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Censored Normal

Suppose v∗ ∼ N
(
µ,σ2

)
. Consider

v =

{
v∗ if v∗ > a

a if v∗ ≤ a

Note: v will have the normal PDF above the cutoff a, and there will be
a point mass at v = a.

Pr (v = a) = Φ
(a–µ
σ

)
where Φ is the standard normal CDF.
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Censored Normal Mean

Censored Normal will have mean

E (v) = E (v |v = a) Pr (v = a) + E (v |v > a) Pr (v > a)

= aΦ + E (v |v > a) (1 – Φ)

= aΦ + (µ+ σλ) (1 – Φ)

where λ =
φ(α)

1–Φ(α)
, Φ = Φ (α), α = a–µ

σ

We can similarly derive the variance from the truncated normal variance

Var (v) = σ2 (1 – Φ)
[
(1 – δ) + (α – λ)2 Φ

]
where δ = λ2 – λα.
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Censored Regression

Let’s now return to censored regression framework:

y∗i = xiβ + εi
yi = 0 if y∗i ≤ 0
yi = y∗i if y∗i > 0

What do you expect to happen if we estimate with OLS?

What if we drop the observations with yi = 0?
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Censored Regression: Conditional Means

Assuming εi is normal, the formula for the censored normal implies

E [y |x] = Φ

(
x′β
σ

)(
x′β + σ

φ
(
x′β/σ

)
Φ (x′β/σ)

)

which implies that OLS applies to full data set is biased.

Using there results from the truncated normal,

E [y |x, y > 0] =

(
x′β + σ

φ
(
x′β/σ

)
Φ (x′β/σ)

)

which implies that OLS applies to non-censored data set is biased.
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Censored Regression: ML Estimation (Tobit)

Log likelihood equation:

ln L =
∑
yi>0

–
1

2

[
ln (2π) + lnσ2 +

(
yi – x′iβ

)
σ2

]
+
∑
yi=0

ln

(
1 – Φ

(
x′iβ

σ

))

Maximum likelihood here will give consistent (and asymptotically
efficient) estimates of all parameters.

This is known as a tobit regression.

These mathematical tools are also what’s behind the Heckman
selection correction to deal with sample selection bias.
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Application 2: Finite Mixture Models

x - observed variables

ζ - unobserved variables assumed to have finite support, Z

θ parameters of interest

p (xi , ζi |θ) - complete data likelihood for ith observation

p (xi |θ) - incomplete data likelihood for ith observation:

p (xi |θ) =
∑
z∈Z

p (xi , z |θ)

qiz (θ) - expectation of incomplete data

qiz (θ) = Pr (ζi = z |xi , θ)
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Example 1: Mixture of Normals

θ = (µ1,µ2,σ,α1)

If zi = 1, then xi ∼ N (µ1,σ)

If zi = 2, then xi ∼ N (µ2,σ)

Pr (zi = 1) = α1

Μ1 Μ2

PrHz=1L = .7

Σ=1

-1 0 1 2 3 4 5
x

0.05

0.10

0.15

0.20

0.25

Density
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Example 2: collusion (Porter, 1983)

Rob Porter (1983), ”A Study of Cartel Stability: The Joint Executive
Committee, 1880-1886”

ln Qt = α0 + α1 ln Pt + α2Dt + U1t

ln Pt = β0 + β1 ln Qt + β2St + β3It + U2t

where

I Dt : demand shifters
I St : supply shifters
I It ∈ {0, 1} indicating whether the cartel was in a price war or not

In previous notation,

I xt = (Qt , Pt , Dt , St)
I zt = It
I θ = (α,β)
I to deal with simultaneity, likelihood function p (xi , ζi |θ) is FIML
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Complete and incomplete data likelihoods

The incomplete data log-likelihood function or unconditional log-likelihood
function for a mixture model involves a sum within an expectation, which
makes it very hard to maximize with standard optimization algorithms:

ln L (x |θ) =
∑
i

ln

(∑
z

p (xi , z |θ)

)
.

The EM algorithm is based on the (expected) complete data log-likelihood
function:

Q (x , q|θ) =
∑
i

∑
z

qiz ln (p (xi , z |θ)) .

Note that Q would simply be the log-likelihood function if ζ were observed.
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EM Algorithm overview

The EM algorithm starts with some initial guess for θ(0)

In the E-step, we calculate expectations of the q’s conditional on the
parameter values:

q
(m)
iz = Pr

(
ζi = z |θ(m–1)

)
.

In the M-step, we maximize the value of the complete data likelihood
function:

θ(m) = max
θ

Q
(

x , q(m)|θ
)

.

The EM Algorithm iteratively applies E and M steps until θ(m)
converges.
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EM Algorithm overview

The E and M steps are often easy computationally (in contrast to
maximization of incomplete data likelihood function).

Each EM iteration increases ln L (x |θ).

Thus, iterating on the E and M steps will monotonically increase

ln L
(

x |θ(m)
)

, and θ(m) will typically converge to a local maximum of

ln L (x |θ).

⇒ EM Algorithm transforms a hard optimization problem into a series
of easy optimization problems
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Monotonicity

Monotonicity

ln L
(

x |θ(m)
)
≥ ln L

(
x |θ(m–1)

)

ln L
(

x |θ(m)
)

=
∑

i ln
(∑

z p
(

xi |ζi , θ(m)
)

p
(
ζi |θ(m)

))
=

∑
i ln

(∑
z p
(
ζi = z |x , θ(m–1)

)
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(n–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(m–1))

)
where the inequality follows from Jensen’s inequality
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Monotonicity

Monotonicity

ln L
(

x |θ(m)
)
≥ ln L

(
x |θ(m–1)

)

ln L
(

x |θ(m)
)

=
∑

i ln
(∑

z p
(

xi |ζi , θ(m)
)

p
(
ζi |θ(m)

))
=

∑
i ln

(∑
z p
(
ζi = z |x , θ(m–1)

)
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(n–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m))p(ζi |θ(m))
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Monotonicity

ln L
(

x |θ(m)
)

=
∑

i ln
(∑

z p
(

xi |ζi , θ(m)
)

p
(
ζiθ

(m)
))

=
∑

i ln

(∑
z p
(
ζi = z |x , θ(m–1)

)
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(n–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(m–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m–1))p(ζiθ(m–1))

p(ζi=z|x ,θ(m–1))

)
where the second inequality follows because θ(m) is selected to maximize∑

i

∑
z

p
(
ζi = z |x , θ(m–1)

)
ln (p (xi |ζi , θ) p (ζi |θ))
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Monotonicity

ln L
(

x |θ(m)
)

=
∑

i ln
(∑

z p
(

xi |ζi , θ(m)
)

p
(
ζi |θ(m)

))
=

∑
i ln

(∑
z p
(
ζi = z |x , θ(m–1)

)
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(n–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m))p(ζi |θ(m))

p(ζi=z|x ,θ(m–1))

)

≥
∑

i

∑
z p
(
ζi = z |x , θ(m–1)

)
ln

(
p(xi |ζi ,θ(m–1))p(ζi |θ(m–1))

p(ζi=z|x ,θ(m–1))

)

= L
(

x |θ(m–1)
)
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Estimation of Mixture of Normals I

θ = (µ1,µ2,σ,α1)

If zi = 1, then xi ∼ N (µ1,σ)

If zi = 2, then xi ∼ N (µ2,σ)

Pr (zi = 1) = α1

In the E step, we just apply Bayes’s Theorem to find q’s

q
(m)
i1 = Pr

(
zi = 1|xi , θ(m)

)
=

α
(m)
1 f

(
xi |µ

(m)
1 ,σ(m)

)
α
(m)
1 f

(
xi |µ

(m)
1 ,σ(m)

)
+
(

1–α
(m)
1

)
f
(
xi |µ

(m)
2 ,σ(m)

)
where f (x |µ,σ) is the density at x of the normal distribution with mean µ
and standard deviation σ2.
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Estimation of Mixture of Normals II

In the M step, maximizing the complete data likelihood function
amounts to taking weighted means:

µ
(m)
z =

∑
i

q
(m)
iz xi

σ(m) =

√√√√∑z

∑
i q

(m)
iz (xi – µz )2∑

z

∑
i q

(m)
iz

α
(m)
z = N–1

∑
i

q
(m)
iz
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Estimation of example 1: mixture of normals

Note: in a mixture model with covariates that enter linearly, the M step
involves weighted OLS instead of a weighted mean

Bottom line: E and M step are both easy computationally, so iterating
on them goes quickly.

In general, the EM algorithm can stop at local maxima, so some care is
needed to ensure a global optimum is attained (e.g., multiple starting
points).
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Model Selection: Likelihood Ratio

When comparing nested models, the likelihood ratio test is simple and
powerful

Let θ be a vector of parameters to be estimated
I θ̂U is the ML estimate for the full model
I θ̂R is the ML estimate for a restricted model (e.g., with a couple elements

fixed to zero)

Likelihood ratio:

λ =
L
(
θ̂R |data

)
L
(
θ̂U |data

) ,

which will always be less than one.
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Model Selection: Likelihood Ratio Test

Null hypothesis H0: the restricted model is correct.

Given regularity conditions and H0, then asymptotically asymptotic
distribution of

–2 lnλ ∼ X 2
R ,

where X 2
R is chi-squared distribution with degrees of freedom equal to

number of restrictions.

Note similarly to testing restrictions in linear models, but no need for
linearity and computationally simpler than F test.

Paul T. Scott NYU Stern Econometrics I Fall 2018 40 / 41



Model Selection: Information Criteria

Just as R2 always increases as we add parameters, so does the likelihood.

When comparing models with different numbers of parameters, we
should penalize more complex models. Intuitively, evaluating models
based on likelihood without a penalty will lead to over fitting the data.

Two popular criteria for selecting models that reward parsimony:

Akaike information criterion = –2 ln L (θ|y) + 2K
Bayes information criterion = –2 ln L (θ|y) + K ln n

To compare two or more models using the AIC (BIC), compute each
model’s AIC (BIC) score, and select the model with the lowest score
(highest penalized likelihood).

Note: these can be used to compare non-nested models as well as
nested models.
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