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Logistics

@ PS3 grades, solutions posted

@ You should have heard something from me about your projects

@ Remaining schedule:
» 11/15 — Discrete Choice (Chris Conlon guest lecture)
» 11/22 — No class — Happy Thanksgiving!
» 11/29 — Workshop with Skand (let us know if there's anything you'd like
to review)
» 12/6 — Last class: group project presentations
» 12/13 — Group projects due by email

@ Group presentations: 12 minutes for individuals (7), 15 minutes for
groups (4)
» 144 minutes total: need to stay on schedule!
> Pizza? Falafel?
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Question

As we all know, if you only have firm fixed effect in a regression, what
you analyze is the variation within a firm. Similarly, if you only have
time fixed effect in a regression, what you analyze is the variation
within a time. My question is how we should interpret results if we
have both firm fixed effect and time fixed effect in one regression.
Do we look at the variation both within a firm and within a time?
This interpretation seems weird to me. So, | am not exactly sure
which data variation is used if we have both firm fixed effect and
time fixed effect.
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Likelihood

@ What's a likelihood? It's basically the probability of the data
conditional on a parameter value 6:

Pr (observed datalf),

but we think of this as a function of € and telling us something about
the plausibility of 6.

@ This requires we have a model that says what the probability of the data
is.

@ = In comparison to GMM estimation, Likelihood-based estimation
requires strong assumptions about the data generating process.

Paul T. Scott NYU Stern Econometrics | Fall 2018 4/41



Likelihood Function

o Let f (/@) represent the probability density of the data conditional on a
parameter value 0. If data are independently and identically distributed,
the likelihood function is

L(Oly) = f(y1.¥2.---.¥s0) =[]  (vi0)
i=1

where y; indicates individual observations (including both dependent
and explanatory variables).

o We typically work with log-likelihood function because it's
computationally simpler:

InL(Bly) = Inf(y;|6).
i=1
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Maximum Likelihood Estimation

o Maximum likelihood estimation entails estimating 8 by maximizing
the likelihood function:

~

0 = arg mgin L(Bly) = arg mein InL(6ly)

@ Since the natural log function is strictly increasing, maximizing the
likelihood and maximizing log likelihood amount to the same thing.
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Likelihood of Normal Errors

@ Recall that PDF of normal distribution is

fi (£l0) = ——— ex -
Nga_\/27ra2 P 202

(for normal & with zero mean and variance )

@ Thus, log likelihood of an individual observation of ¢; is

1 5 £
In for (gjlo) =5 Ino® +In2m + 0712
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Likelihood for Linear Regression Model

@ For linear model with €; mean-zero normal conditional on x;, the
likelihood of one observation is

L(B,olyi. x;) = fi (vi —xB|o)

noting that this requires the distribution of ¢; to be mean-zero normal
conditional on x;.

@ Assuming the data are i.i.d across observations, the conditional
likelihood of all the data is then

InL(B.oly,X) = >i1Infy (vi—xiBlo) 2
= 3% ('n o2+ In2r + (y-axzﬂ))
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MLE for Linear Model |

@ Linear model log-likelihood:

n o 5
|nL(B,0\y,X):—%Z <|n02+|n2w+w>

i=1
@ Focus on the term that involves 3:
& 2
- !
552 > (vi—xip)
i=1

NB: maximizing the likelihood with respect to 3 is equivalent to least
squares
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MLE for Linear Model Il

@ MLE estimate of 3 is the same as OLS.

o MLE estimate of o2 comes from setting d%f InL <B aly, X) =0:

n
2 -1 2
OMLE = N Zei

i=1

— v — ¥
where e; = y; — x:[3.

@ Note that this is a bit different than the estimate of o2 we saw before:
n
s> =(n- K)_1 z:e,-2
i=1

but the difference will be small in large samples. Recall: s2 is a unbiased
estimate of 02, so this means that the ML estimate is biased, and
substantially biased in small samples.
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Asymptotic Efficiency

@ An estimator is asymptotically efficient if its asymptotic covariance
matrix is not larger than any other consistent estimator (i.e., standard
errors are as small as any other estimator).

@ It can be shown that (under regularity conditions), MLE is
asymptotically efficient.

@ Thus, MLE always performs well in large samples.
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Estimating Standard Errors |

@ The first way to estimate the asymptotic covariance matrix is to take

second derivatives of the likelihood function:

L Pine(d)
C T a0

@ A second way is to compute the covariance of the first derivatives:

-1
lz g,@:]
where
dlnf (x,-, 9)

Rl
@ Either of the above is an asymptotically consistent estimator of

g =

4 <éMLE>- The latter is usually easier to compute.
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MLE as GMM

@ To maximize the likelihood function we set

) n ) n 8Inf(x,-,9)
n- 8. =n ——2 =0
;g:g, zg: 5
i=1 i=1
Thus, maximum likelihood is a GMM estimator based on moments
dlnf x-,@
E (;') —0.

00

@ The GMM estimator for the asymptotic covariance matrix has the form

(rs—lr)_l,

but in the MLE context it can be shown that S and I' are asymptotically
equivalent, so they effectively cancel and we can use either Storr!
to estimate the variance.
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Conditional Likelihood |

@ Our starting point was that likelihoods were about the probability of the
data conditional on a parameter value:

In L (0|data) me (data;|6) .

@ The above derivation was about ¢;, or the probability of y;|x;. But x;
might be a random variable, and it's also part of the data.

@ Do we need to consider the randomness in x;7 In econometric models,
typically we don’t bother to explicitly model the randomness in
explanatory variables.
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Conditional Likelihood Il

@ Start with the full log likelihood function

n
> Inp (v, xile)
i=1

@ We can decompose this using Pr (y;, x;) = Pr (y;|x;) Pr (x;):

n n
Soinf ik, 0) + > Ing (x;, 8)
i=1 i=1

where 0 is the subset of v that dictates the distribution of y;|x; and § is
the subset of o that dictates the distribution of x;.

o If we're only interested in @, then as long as there are no restrictions
between 0 and J, we can just focus on the first component of the
likelihood function (i.e., the conditional likelihood function)
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Endogeneity

@ Note that the likelihood framework does not solve the endogeneity
problem.

@ The consistency of MLE relies on the model being correctly specified,
and when ¢; and x; are correlated, the mean of ¢; is generally non-zero
conditional on x;.

e Full information maximum likelihood (FIML) and limited information
maximum likelihood (LIML) are the ML analog of IV estimators.
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Application: Censored Regression Model |

@ Censored data is a common problem

» Demand for a concert/sporting event with capacity constraints.
» Meters often only measure outcomes within a bounded range

(speedometers, thermometers, etc.)
> A test is scored on a bounded range (200-800), and we're thinking of the

test as marker for ability.
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Application 1: Censored Regression Model Il

yi= xiB+¢; latent variable (black dashed)
yi= 0 if y <0 (red line)
yi= y* if y* >0 (red line)

20
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How would we go about estimating this model?
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Background: Truncated Normal

@ Suppose v is distributed with standard normal PDF, but only for values

above a cutoff a.
o PDF will be
¢ (v)
1-d(a)
where ¢ is the standard normal PDF and & is standard normal CDF.

@ Note that we must divide by 1 — ® (a) to make the PDF integrate to 1.
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Truncated Normal Moments |

Truncated Normal Properties

Suppose v ~ A (0, 1) has a normal distribution truncated with v > a. That
is, v takes values in (a, c0) and has PDF

¢ (v)
1-d(a)

Then,
Elv] = sl

()
= (1= 28 (8 -2)

The ratio of a normal density to its CDF, = é‘&)' is known as the inverse
Mills ratio.
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Truncated Normal Moments |l

o If original distribution is v ~ N (,u, 02), truncated for v > a, we get
similar results:

Elv] = ot oo
ar vl = o® (1- ( = oR)
where o = ‘-’?T“.
o If truncation is for v < a, then we replace 1¢q(>()) with — ¢((a))
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Censored Normal

o Suppose v* ~ N (u, 02). Consider

v oifvt>a
v = _
a if v¥ <a

@ Note: v will have the normal PDF above the cutoff a, and there will be
a point mass at v = a.

e Priv=a)=09 (%) where @ is the standard normal CDF.
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Censored Normal Mean

@ Censored Normal will have mean

E(v) = E(vlv=a)Pr(v=a)+ E(v|lv>a)Pr(v>a)
= ad+ E(vlv>a)(l-9)

= a®+ (u+oX)(1-9)

where A = %405, & = @ (a), a = 2

@ We can similarly derive the variance from the truncated normal variance
Var (v) = 02 (1= ) |(1=0) + (e = A)* &

where § = A2 - \a.
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Censored Regression

@ Let’s now return to censored regression framework:

yi= xiB+e
yi= 0 ify/ <0
Yi= yi if y* >0

@ What do you expect to happen if we estimate with OLS?
@ What if we drop the observations with y; = 07
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Censored Regression: Conditional Means

@ Assuming ¢; is normal, the formula for the censored normal implies

LRIGICEE-)

which implies that OLS applies to full data set is biased.

@ Using there results from the truncated normal,

which implies that OLS applies to non-censored data set is biased.
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Censored Regression: ML Estimation (Tobit)

@ Log likelihood equation:

(

2] gn(o )

@ Maximum likelihood here will give consistent (and asymptotically
efficient) estimates of all parameters.

1
InL:Z In (27) 4 Ino? +
yi>0

@ This is known as a tobit regression.

@ These mathematical tools are also what's behind the Heckman
selection correction to deal with sample selection bias.
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Application 2: Finite Mixture Models

x - observed variables

[

[

¢ - unobserved variables assumed to have finite support, Z

©

0 parameters of interest

p (x;j, ¢;|0) - complete data likelihood for ith observation

©

p (x;|0) - incomplete data likelihood for ith observation:

p(x;|0) = Zp (x;, z|0)

zeZ

©

gi» (0) - expectation of incomplete data

qiz (0) = Pr (G = z|x;, 0)
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Example 1: Mixture of Normals

® 6 o o

0 = (u1, p2,0, 1)

If z; =1, then x; ~ N (u1,0)
If zi =2, then x; ~ N (up,0)
Pr(zi=1)=o

Paul T. Scott NYU Stern

Density

Prz=1) = .7

o=1

R

S
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Example 2: collusion (Porter, 1983)

@ Rob Porter (1983), " A Study of Cartel Stability: The Joint Executive

Committee, 1880-1886"

InQt = ag+ailnP:+arDe + Usy
InP: = Bo+B1InQt+ B2St + B3lt + Ust
where

» D;: demand shifters
> S supply shifters
> It € {0,1} indicating whether the cartel was in a price war or not

@ In previous notation,

> xt = (Q¢, Pt, D¢, St)
>z =1t

> 0= (a,p)

>

to deal with simultaneity, likelihood function p (x;, ¢;|0) is FIML
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Complete and incomplete data likelihoods

The incomplete data log-likelihood function or unconditional log-likelihood
function for a mixture model involves a sum within an expectation, which
makes it very hard to maximize with standard optimization algorithms:

InL(x|0) = Z In (Z p (x;, z\@)) :
i z
The EM algorithm is based on the (expected) complete data log-likelihood

function:
X C]|‘9 qulz X/v2\9))-

Note that @ would simply be the log-likelihood function if { were observed.
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EM Algorithm overview

@ The EM algorithm starts with some initial guess for 6(0)

@ In the E-step, we calculate expectations of the g's conditional on the
parameter values:

q,(Zm) = Pr (C, = 2\9('"—1)> :

@ In the M-step, we maximize the value of the complete data likelihood
function:

o(m) — méaxQ (x, q(’")\e) .

@ The EM Algorithm iteratively applies E and M steps until 6(m)
converges.
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EM Algorithm overview

@ The E and M steps are often easy computationally (in contrast to
maximization of incomplete data likelihood function).

e Each EM iteration increases In L (x|6).

@ Thus, iterating on the E and M steps will monotonically increase
InL x|9(m)), and 6(m) will typically converge to a local maximum of
InL(x|0).

o = EM Algorithm transforms a hard optimization problem into a series
of easy optimization problems
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InL (x|0('")) >1InlL (x|9(m—1))

= DA



Monotonicity

Monotonicity

InL (x\e(m)) >InlL (X|e(m—1))

InL (x\e(m))

S:ln (ZZP (Xi|Civ 9('")) P (C"w(m)))

(S s ) )

v

_ p(xil¢i.00™)p (it
5 Sep (6= 2 olm ) '"( (p(c,-:z|x),e<(m-1>) :
where the inequality follows from Jensen's inequality
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Monotonicity

InL (x|9(m)) = I (Zz p (x,-|g,-, e(m)) p (4,9('")))

p(¢i=z|x,0(1))

v

2.idzP (Ci = z|x, 9('”—1)) In (p(XiKiﬁ(m))p(CiW(m)))

p(G=2x 0 D)

o -1 p(xil¢i.0(m ) p(i6m D)
> 2i2.P (C' = zlx, ot )) n ( p(¢i=z|x,6(m1))
where the second inequality follows because 6(m) is selected to maximize

32" (G =2 07 ) In(p (1. 0) p (Gil6))
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Monotonicity

InL (x\a(m)) = Y. (Zz p (x,-|<,-, e(m)) p (g,-|9(m)))

xi|¢i,0m 2| o(m)
= S (Ser (= st A L)

Y

A )
2idizP (C’ =2|x, 6 1)) In ( p(¢i=z|x,0(m1))

Y]

R m— p(x,-\Q,e(m—l))p(ci‘g(m—l))
Zi ZZ p (C' =zlx, 6 1)) In < p(¢i=z|x,6(m1))

= L (x|9(m_1))
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Estimation of Mixture of Normals |

0 = (u1, p2,0, 1)

If zi =1, then x; ~ N (u1,0)
If zi =2, then x; ~ N (up,0)
Pr(zi=1)=o

® 6 o o

In the E step, we just apply Bayes's Theorem to find g's

aiy” = Pr(z = 10,00 ) =
o™ (1™ ™
o (il 0™ )+ (104 ) £ (1™ o))

where f (x|, o) is the density at x of the normal distribution with mean
and standard deviation o2.
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Estimation of Mixture of Normals Il

@ In the M step, maximizing the complete data likelihood function
amounts to taking weighted means:

u$™ =37 gy

| T o)
Ez Zi q,(zm)

o™ =Ny g
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Estimation of example 1: mixture of normals

@ Note: in a mixture model with covariates that enter linearly, the M step
involves weighted OLS instead of a weighted mean

@ Bottom line: E and M step are both easy computationally, so iterating
on them goes quickly.

@ In general, the EM algorithm can stop at local maxima, so some care is
needed to ensure a global optimum is attained (e.g., multiple starting
points).
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Model Selection: Likelihood Ratio

@ When comparing nested models, the likelihood ratio test is simple and
powerful

@ Let @ be a vector of parameters to be estimated

> 9U is the ML estimate for the full model
> O is the ML estimate for a restricted model (e.g., with a couple elements
fixed to zero)

o Likelihood ratio:
L <0R\data)

L <9U|data> ’

which will always be less than one.
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Model Selection: Likelihood Ratio Test

@ Null hypothesis Hy: the restricted model is correct.

@ Given regularity conditions and Hp, then asymptotically asymptotic
distribution of
~2In A\ ~ X3,

where X’% is chi-squared distribution with degrees of freedom equal to
number of restrictions.

@ Note similarly to testing restrictions in linear models, but no need for
linearity and computationally simpler than F test.
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Model Selection: Information Criteria

o Just as R? always increases as we add parameters, so does the likelihood.

@ When comparing models with different numbers of parameters, we
should penalize more complex models. Intuitively, evaluating models
based on likelihood without a penalty will lead to over fitting the data.

@ Two popular criteria for selecting models that reward parsimony:

Akaike information criterion = -2InL(0]y) + 2K
Bayes information criterion = -2InL(0)y)+ KlInn

@ To compare two or more models using the AIC (BIC), compute each
model's AIC (BIC) score, and select the model with the lowest score
(highest penalized likelihood).

@ Note: these can be used to compare non-nested models as well as
nested models.
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